

Green Line Transformation Program: Future Capacity Study Update

Fiscal & Management Control Board

May 7, 2018

Green Line Transformation Program

Today's Presentations:

1. Future Capacity Study

- Year Long study focused on identifying opportunities to increase Green Line Customer Capacity
- Multiphase program has been identified to modernize and increase capacity of the Green Line

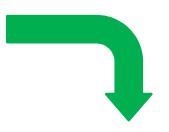
2. Green Line Transformation Program

- Establish a program that integrates safety and reliability needs of today and modernization planning for tomorrow into a single, coordinated capital investment program
- Current \$950m+ of Green Line SGR projects identified in the CIP
- 3. Award of Program Management & Construction Management team to support this program

Green Line Future Capacity Study Overview

- Goal: To evaluate practical concepts to increase customer carrying capacity on the Green Line
 - Define Infrastructure Constraints
 - Explore Vehicle Configurations
- Recommended path to achieve greater Green Line capacity
- Next Steps we are taking to get there

Challenges and Constraints


Infrastructure

- Accessibility
- Curves, Crests and Sags, Tunnels
- · Platform Size and Locations
- Maintenance Facilities and Yards
- Bridge Load Ratings
- Power Distribution
- Signals (including GLTPS)
- No Train Operator Simulator

- Duty Cycle (intensity of service)
- Service Reliability
- Infrastructure
- AccessibilityFare Collection
- Crash Worthiness
- Vehicle Performance (Acceleration & Braking)
- Design Availability (Can it be built)

Operations

- Schedule
- Platform Crowding
- Peak Period Demand
- Maintenance Requirements
- Bunching and Double Berthing
- Operator Training
- Station Dwell Time
- Onboard Fare Collection

Relationship between Infrastructure and Vehicle Design

- Legacy infrastructure has always influenced vehicle design
 - Lechmere Inner Loop, circa 1920, has been a significant influence on multiple generations of Green Line vehicles and is going away with the GLX
 - The Lechmere Viaduct circa 1905, restricts vehicle loading
 - The diameter of the Park Street Loop defined circa 1895
 - The track spacing and platform layout along Beacon Street in Brookline (C Branch) determined circa 1887
- Front door fare collection constrained door and cab design, going away with AFC 2.0

- A comprehensive review of the Green Line was conducted
- All infrastructure constraints that impact vehicle design and capacity have been identified
 - Bridges and Structures
 - Restrictive Curves
 - Lechmere Inner Loop
 - Lake St Yard and Boston College Station
 - Reservoir Yard
 - Park Street Loop
 - Station and Platform Lengths
 - Vehicle Maintenance Facilities and Storage
 - Power & Signals
 - Track State of Good Repair

- A comprehensive review of the Green Line was conducted
- All infrastructure constraints that impact vehicle design and capacity have been identified


Bridges and Structures

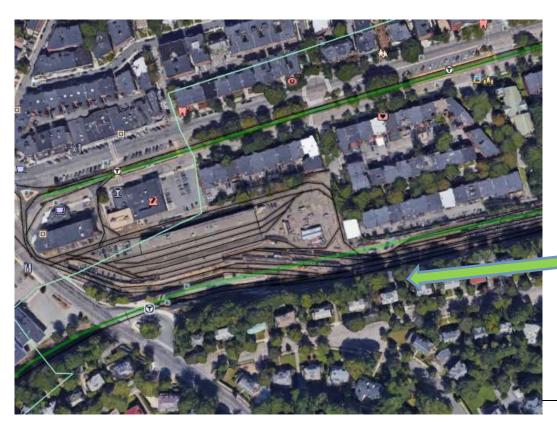
- Restrictive Curves
 - Lechmere Inner Loop
 - Lake St Yard and Boston College Station
 - Reservoir Yard
- Park Street Loop
- Station and Platform Lengths
- Vehicle Maintenance Facilities and Storage
- Power & Signals
- Track State of Good Repair

Bridges and Structures

 Longer and heavier cars with different axle spacing will load bridges differently than existing cars

Bridges and Structures - Lechmere Viaduct

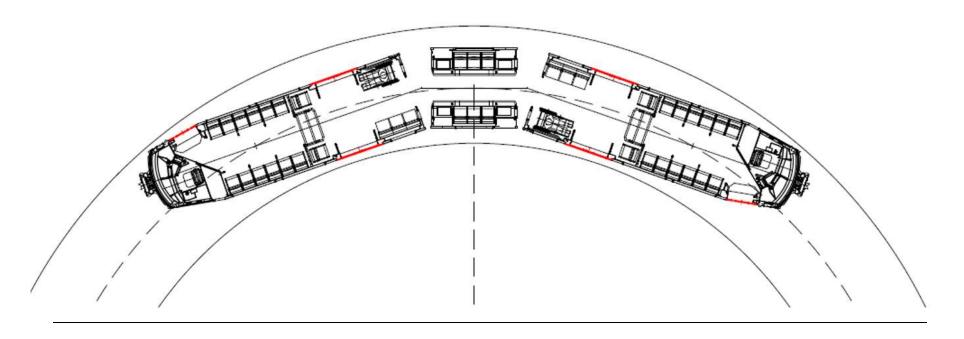
- Landmark Bridge between Boston and Cambridge.
- Modernization required because the condition of the bridge restricts current operations to low speeds and limits the number of trains in each direction at any time.



Bridges and Structures - Clinton Path Underpass

- Pedestrian Underpass near Reservoir Station
- Minor upgrades will be needed to support a longer vehicle

- A comprehensive review of the Green Line was conducted
- All infrastructure constraints that impact vehicle design and capacity have been identified
 - Bridges and Structures


Restrictive Curves

- Lechmere Inner Loop
- Lake St Yard and Boston College Station
- Reservoir Yard
- Park Street Loop
- Station and Platform Lengths
- Vehicle Maintenance Facilities and Storage
- Power & Signals
- Track State of Good Repair

Restrictive Curves

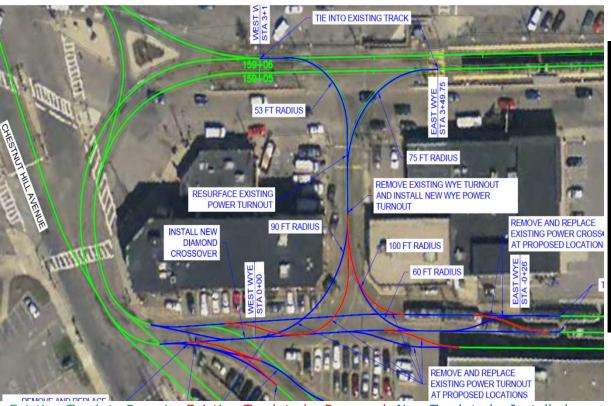
Tight Curves restrict vehicle design and operations

Restrictive Curves

- The 42 ft. Lechmere Inner Loop curve has influenced the design of Green Line vehicles for 96 years and is being removed as part of the GLX project.
- The remaining Tightest Curves Shown Below:

Radius	Location	Name		
45	Reservoir Yard	West Wye Curve 97		
45	Lake St Yard	Curve 16		
45	Lake St Yard	Inner Loop		
46	Lake St Yard	Curve 13		
47	Park St	Park St Loop		
49	Government Center	Brattle Loop		

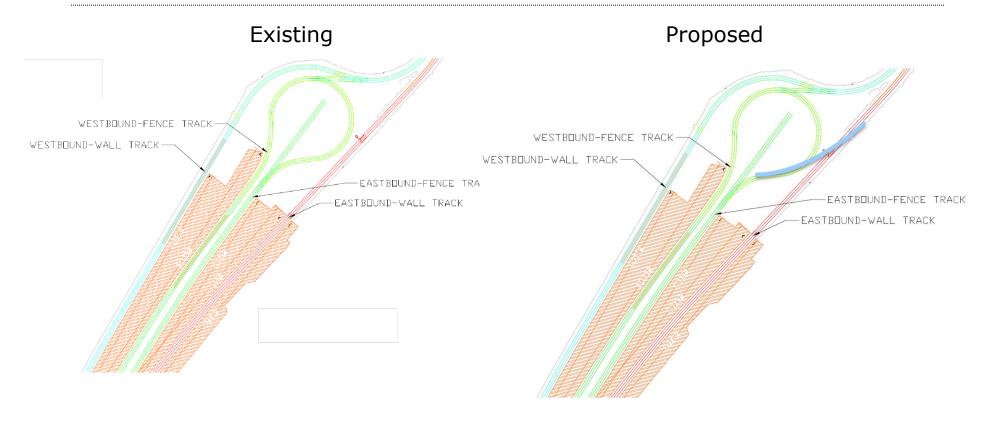
Restrictive Curves - Lake St Yard & BC Station


- Lake Street Yard Loops are 45ft. curves that will be the tightest curves in the system after GLX opens
- Inbound and Outbound platforms are separated and both platforms are on curves and too short
- Expanding the yard by eliminating the loop will provide more vehicle storage and a better BC Station

Restrictive Curves - Reservoir Yard

- Reservoir yard also has 45 foot curve that will be the tightest in the system.
- A proposed plan is shown below.

Existing Track to Remain, Existing Track to be Removed, New Track to be Installed


- A comprehensive review of the Green Line was conducted
- All infrastructure constraints that impact vehicle design and capacity have been identified
 - Bridges and Structures
 - Restrictive Curves
 - Lechmere Inner Loop
 - Lake St Yard and Boston College Station
 - Reservoir Yard

Park Street Loop

- Station and Platform Lengths
- Vehicle Maintenance Facilities and Storage
- Power & Signals
- Track State of Good Repair

Park Street Loop

- The Park Street Loop at 47 ft. is needed to maintain operational flexibility
- A new cross over will be necessary to efficiently utilize both platforms

- A comprehensive review of the Green Line was conducted
- All infrastructure constraints that impact vehicle design and capacity have been identified
 - Bridges and Structures
 - Restrictive Curves
 - Lechmere Inner Loop
 - Lake St Yard and Boston College Station
 - Reservoir Yard
 - Park Street Loop

Station and Platform Lengths

- Vehicle Maintenance Facilities and Storage
- Power & Signals
- Track State of Good Repair

Stations and Platforms

- 34 Platforms are Under 225 Feet
- 225 feet is the length required to fully berth current vehicles as three car trains

Central Subv	way	C-Line		B-Line	
Platform	(ft.)	Platform	(ft.)	Platform	(ft.)
Boylston (EB)	210	Cleveland Circle (EB)	113	Boston College (EB)	130
Science Park (EB)	220	Cleveland Circle (WB)	136	Boston College (WB)	138
Science Park (WB) 222		St. Paul Street (EB)	195	J , ,	
		Washington Square (WB)	200	Blandford Street (EB)	197
D-Line		Englewood Avenue (EB)	204	Sutherland Road (WB)	207
		Washington Square (EB)	204	Blandford Street (WB)	207
Platform	(ft.)	Dean Road (EB)	206	Allston Street (WB)	218
Brookline Hills (EB)	214	Hawes Street (EB)	207	Allston Street (EB)	219
Fenway (WB)	223	St. Mary's Street (EB)	210		
Reservoir (WB)	223	St. Mary's Street (WB)	210	Griggs Street (WB)	220
E-Line		Kent Street (WB)	214	Griggs Street (EB)	221
	(6)	Kent Street (EB)	216	Sutherland Road (EB)	224
Platform	(ft.)	Brandon Hall (WB)	216		
Heath Street (EB)	131	Summit Avenue (EB)	219		
		St. Paul Street (WB)	220		
		Hawes Street (WB)	223		
		Brandon Hall (<u>EB</u>)	224		

- A comprehensive review of the Green Line was conducted
- All infrastructure constraints that impact vehicle design and capacity have been identified
 - Bridges and Structures
 - Restrictive Curves
 - Lechmere Inner Loop
 - Lake St Yard and Boston College Station
 - Reservoir Yard
 - Park Street Loop
 - Station and Platform Lengths

Vehicle Maintenance Facilities and Storage

- Power & Signals
- Track State of Good Repair

Vehicle Maintenance Facilities and Storage

- Shop equipment such as lifts and roof access mezzanines are positioned to maintain the existing fleets of 75 foot cars with three trucks
 - Riverside, Reservoir, Lake Street & GLX
- Longer vehicles with more trucks will require new lifts and new storage strategies

- A comprehensive review of the Green Line was conducted
- All infrastructure constraints that impact vehicle design and capacity have been identified
 - Bridges and Structures
 - Restrictive Curves
 - Lechmere Inner Loop
 - Lake St Yard and Boston College Station
 - Reservoir Yard
 - Park Street Loop
 - Station and Platform Lengths
 - Vehicle Maintenance Facilities and Storage

Power & Signals

Track State of Good Repair

Power and Signals

Signals: Legacy Signals limit vehicle operations

- Continue our \$350M+ Green Line signals modernization program
- New Vehicles must operate with Green Line Train Protection (GLTP)
 System

Power: Running more trains requires more electrical current which puts more stress on our distribution network

 Power Capacity analysis is planned to define what cable and wiring upgrades are needed now and for the future

- A comprehensive review of the Green Line was conducted
- All infrastructure constraints that impact vehicle design and capacity have been identified
 - Bridges and Structures
 - Restrictive Curves
 - Lechmere Inner Loop
 - Lake St Yard and Boston College Station
 - Reservoir Yard
 - Park Street Loop
 - Station and Platform Lengths
 - Vehicle Maintenance Facilities and Storage
 - Power & Signals

Track State of Good Repair

Track State of Good Repair

- Track conditions can limit operations of a fully accessible vehicle
 - Continue investments of \$150M+ currently dedicated to SGR of Green line track
 - Additional track upgrades are anticipated to be need to return all Green Line track to good condition

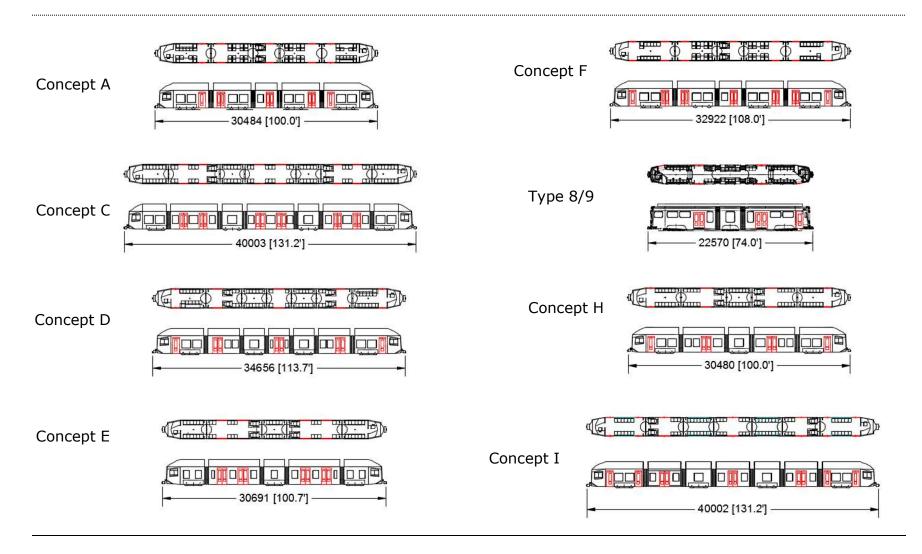
- New Vehicle Goals
- Concept Vehicles Reviewed
- Evaluation Criteria
- Recommended Concept Vehicle
- Detailed Conceptual Analysis Examples
- System Operational Modeling

New Vehicle Goals

- Concept Vehicles Reviewed
- Evaluation Criteria
- Recommended Concept Vehicle
- Detailed Conceptual Analysis Examples
- System Operational Modeling

New Concept Vehicle Goals

- Availability from multiple vehicle manufactures
- 100% Low Floor and Accessible
- Provide a full width operating Cab
- Maximize passenger capacity
- Maximize door openings and boarding efficiency
- Ability to negotiate curves, crests, sags, clearances and grades
- Limit axle loads to minimize impacts on track and structures
- Meet duty cycle and operational tempo needed for GL operations
- Minimize operating and maintenance resources



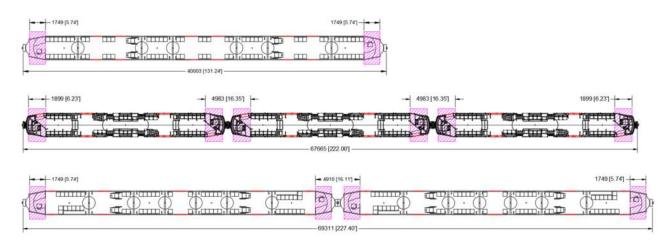
New Vehicle Goals

Concept Vehicles Reviewed

- Evaluation Criteria
- Recommended Concept Vehicle
- Detailed Conceptual Analysis Examples
- System Operational Modeling

- New Vehicle Goals
- Concept Vehicles Reviewed
- Recommended Concept Vehicle

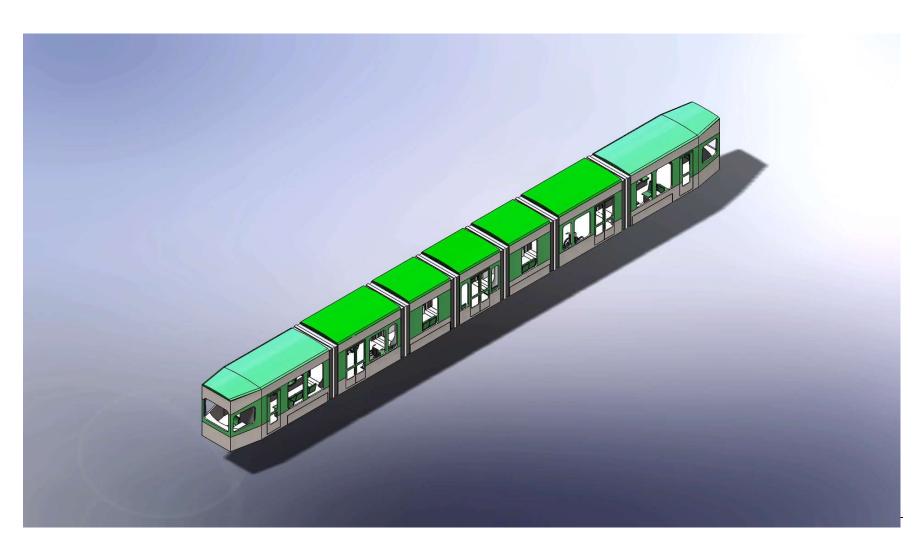
Evaluation Criteria


- Detailed Conceptual Analysis
- System Operational Modeling

Evaluation Criteria

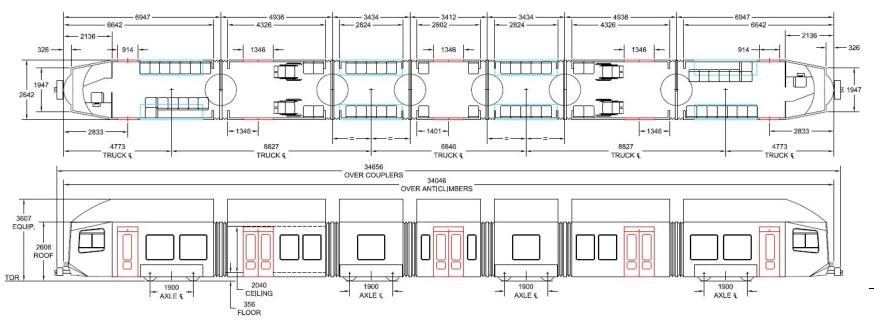
- Infrastructure Changes
- Future Capacity
- Dwell Time Impacts
- Fleet Maintenance Costs
- Fleet Operating Costs
- Predicted Reliability

- Operating Impact on Infrastructure
- Fleet Procurement Costs
- Procurement Risk
- Technical Risk
- Industry Standards
- Interoperability

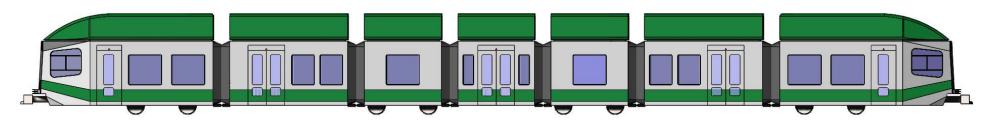

- New Vehicle Goals
- Concept Vehicles Reviewed
- Evaluation Criteria

Recommended Concept Vehicle

- Detailed Conceptual Analysis
- System Operational Modeling


Recommended Concept Vehicle - Concept D

Recommended Concept Vehicle - Details

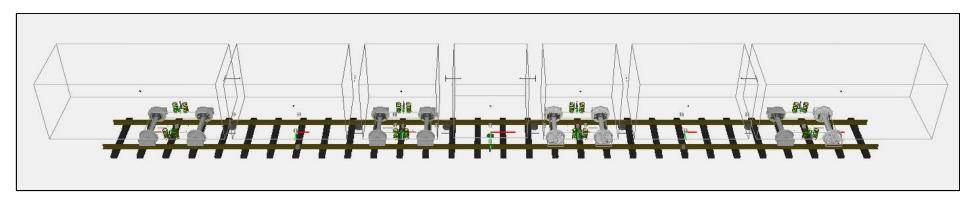

- Fully Accessible 100% Low Floor, no stairs
- Same Passenger Capacity as a two car Type 8/9 train
- 7 Sections with 4 Powered Trucks
- 5 Door Openings per side
- Full Width Cab at each end

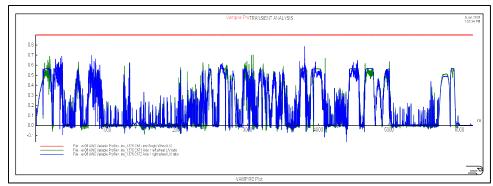
Recommended Concept Vehicle-Industry Lineage

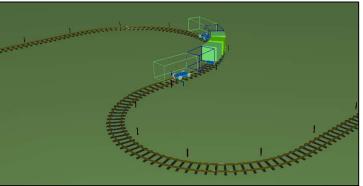
Rail vehicle manufactures offer modular designs like recommended concept vehicle

Concept Vehicles

- New Vehicle Goals
- Concept Vehicles Reviewed
- Evaluation Criteria
- Recommended Concept Vehicle

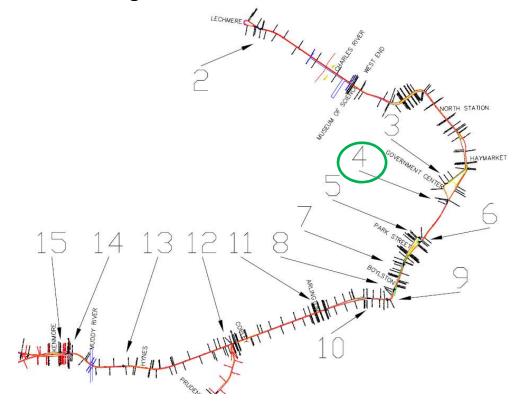

Detailed Conceptual Analysis Examples


System Operational Modeling



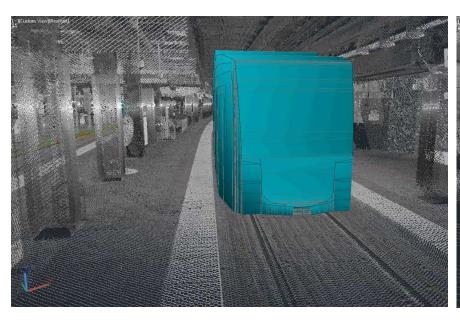
Detailed Conceptual Analysis – Dynamic Modeling

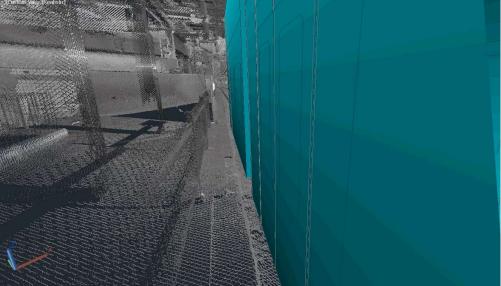
- · Dynamic simulations were conducted
- · Simulations included carious track conditions including curving and stability
- Simulations demonstrated that Concept D is viable in the MBTA Green Line operating environment



Detailed Conceptual Analysis - Clearance

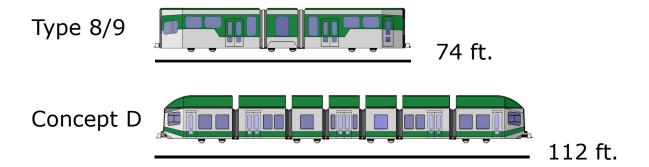
 Two Concept D vehicles operating west of Government Center through cloud of Park Street

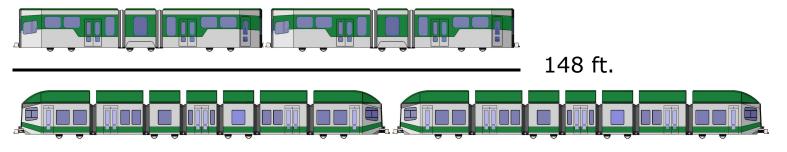



West of Government Center Station Location 4

Detailed Conceptual Analysis - Park Street

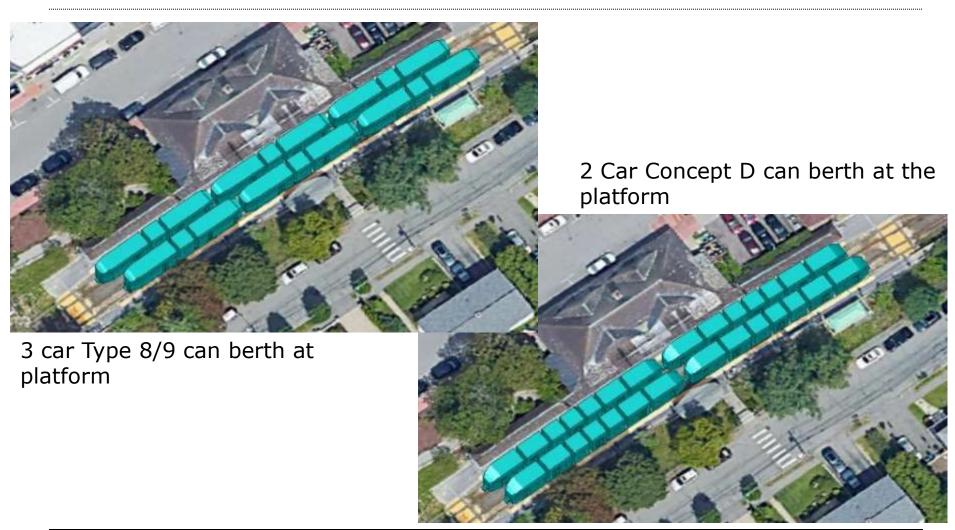
• Concept D operating through actual MBTA collected LIDAR point cloud of Park Street





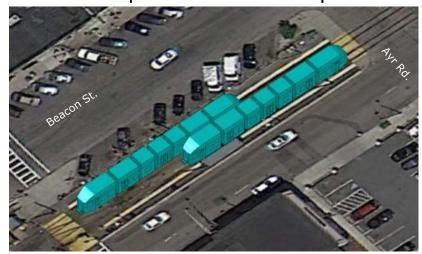
Detailed Conceptual Analysis – Platforms

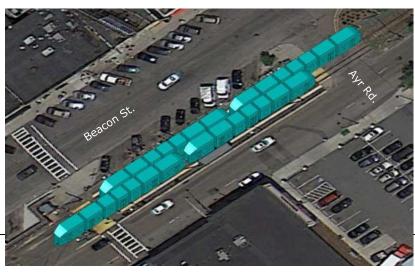
 Analysis of current platforms was conducted to determine impact of concept vehicles on stations



225 ft.

Detailed Conceptual Analysis - Newton Center Platform




Detailed Conceptual Analysis – Platforms C Line

2 Type 8/9 can berth at platform

1 Concept D can berth at platform

2 Concept D cars cannot

Detailed Conceptual Analysis – Platforms D & E Lines

- Three Platforms Require work to run longer trains on the for D & E Lines
- 225 feet is optimally required platform length

D-Line				
Platform	(ft.)			
Brookline Hills (EB)	214			

E-Line				
Platform	(ft.)			
Heath Street	131			

Central Subway				
Platform	(ft.)			
Boylston (EB)	210			

Detailed Conceptual Analysis – Platforms B & C Lines

27 Platforms listed below must be extended to allow 2 Concept D's to berth

the B & C lines

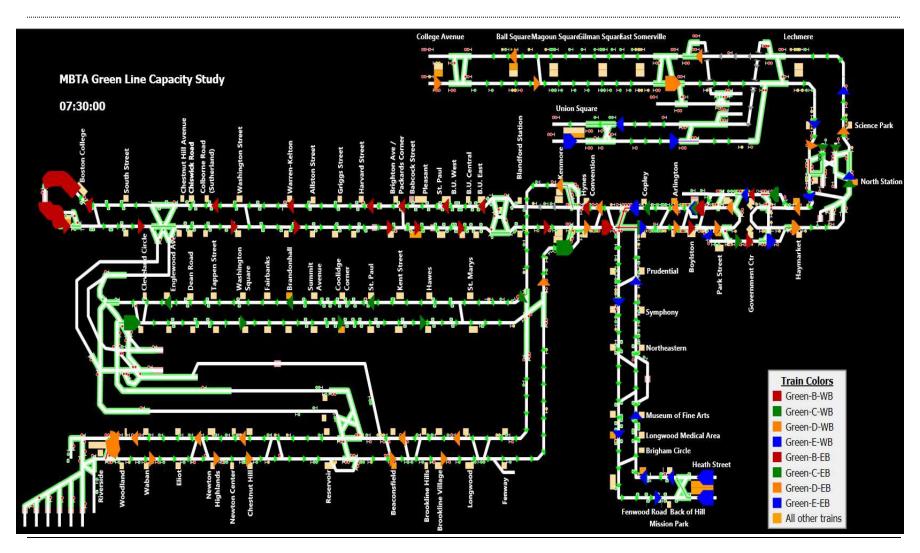
B-Line					
Platform	(ft.)				
Boston College (EB)	130*				
Boston College (WB)	138*				
Blandford Street (EB)	197				
Sutherland Road (WB)	207				
Blandford Street (WB)	207				
Allston Street (WB)	218				
Allston Street (EB)	219				
Griggs Street (WB)	220				
Griggs Street (EB)	221				
Sutherland Road (EB)	224				

C-Line					
Platform	(ft.)				
Cleveland Circle (EB)	113				
Cleveland Circle (WB)	136				
St. Paul Street (EB)	195				
Washington Square (WB)	200				
Englewood Avenue (EB)	204				
Washington Square (EB)	204				
Dean Road (EB)	206				
Hawes Street (EB)	207				
St. Mary's Street (EB)	210				
St. Mary's Street (WB)	210				
Kent Street (WB)	214				
Kent Street (EB)	216				
Brandon Hall (WB)	216				
Summit Avenue (EB)	219				
St. Paul Street (WB)	220				
Hawes Street (WB)	223				
Brandon Hall (EB)	224				

^{*} BC Station Requires changes due to Lake street Yard Changes

Concept Vehicles

- New Vehicle Goals
- Concept Vehicles Reviewed
- Evaluation Criteria
- Recommended Concept Vehicle
- Detailed Conceptual Analysis Examples


System Operational Modeling

Detailed Conceptual Analysis – Operational Modeling

- A complete operational model of the Green Line was developed
- Multiple operational simulations were run to identify the best combination of concept vehicles and infrastructure needs.
- The model confirms recommended Concept D will improve Green Line operations

Detailed Conceptual Analysis - Operational Simulation

Phased Implementation

- Multi-phased program proposed that will transition the Authority to a modern 100% accessible high capacity car and necessary system improvements
 - Phase I: Near term projects currently identified in FY19-23 Draft CIP totaling \$950M+
 - Phase II: Procurement of a new modern fleet of Green Line vehicles and completion of necessary infrastructure changes to operate them as single units
 - Phase III: Completion of necessary infrastructure changes to operate new vehicles as 2 car units on the D & E Lines.
 - Phase IV: Long term possibility, completion of infrastructure changes to operate new vehicles as 2 car units on B & C Lines.

Phased Implementation – Phase I

- Projects Currently Identified in draft FY19-23 CIP \$963.7M
 - \$739.9M Programmed in current draft CIP
 - The remaining program costs will be programmed in the outlying yeas of the CIP
 - Many Projects identified are currently underway
- Projects address urgent SGR needs and necessary system reliability improvements
 - Track
 - Power
 - Signals
 - Current Vehicles
 - Infrastructure
- Will be discussed further in following presentation
- Continue project funding of \$223.8M will be programmed in next CIPs

Phased Implementation – Phase II

- Operate New Trains as Single Cars on the Green Line All Lines
- Increase weekday peak trains operating

• Current: 73 Trains

Proposed: 94 Trains

Capacity Gain: 15%

Necessary Projects

- Complete Phase I Programs
- Vehicle Procurement
- Reconditioning of Lechmere Viaduct
- Installation of a Park Street Loop Crossover
- Expand Vehicle Maintenance Facilities
- Reconfigure Lake St. and Reservoir Yards
- Reconfigure BC Station
- Rough estimated cost: \$1.5-\$2 Billion

Phased Implementation – Phase III

- Operate New Trains as Single Cars on the B & C and Operate New Trains as two car trains on the D & E lines
- Increase weekday peak trains operating

Current: 73 Trains
Proposed: 94 Trains
Capacity Gain: 50%+

Necessary Projects

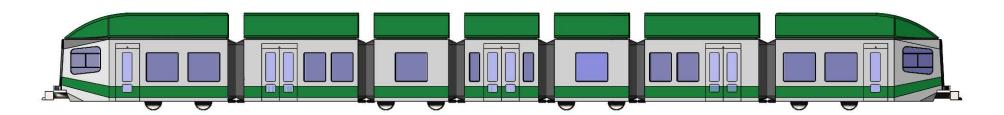
- Complete Phase I Programs
- Complete Phase II Programs
- Reconfigure Heath Street Station
- Extend Brookline Hills- East Bound Platform
- Clear obstruction on Boylston Station East Bound
- Upgrade Power Distribution
- Retirement of the Type 7 & 8 Cars
- Rough estimated cost: \$500 million

Phased Implementation – Phase IV (Long Term Possibility)

- Operate New Trains as two car trains on all lines
 - If ridership growth requires more capacity than programed two car trains could be operated on all lines
- Increase weekday peak trains operating

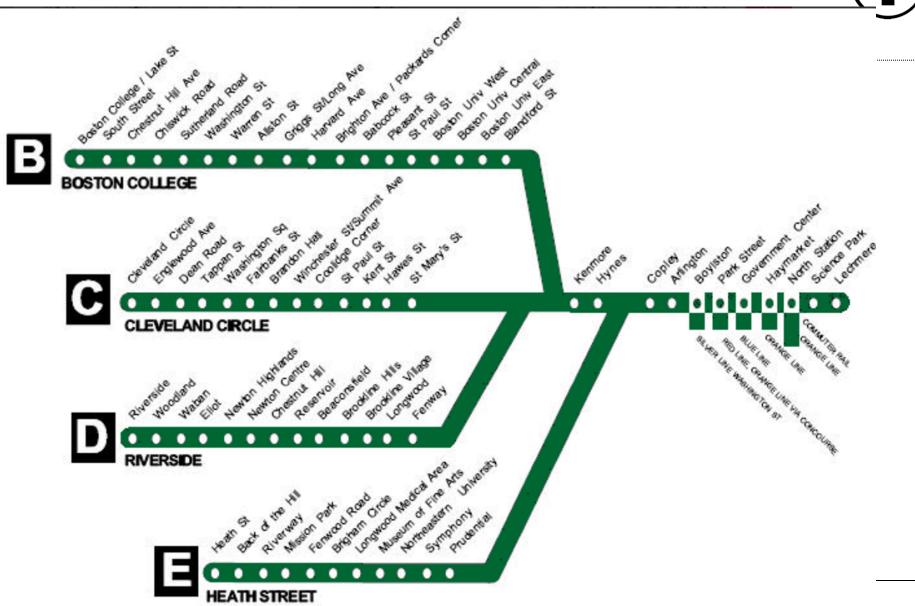
Current: 73 Trains

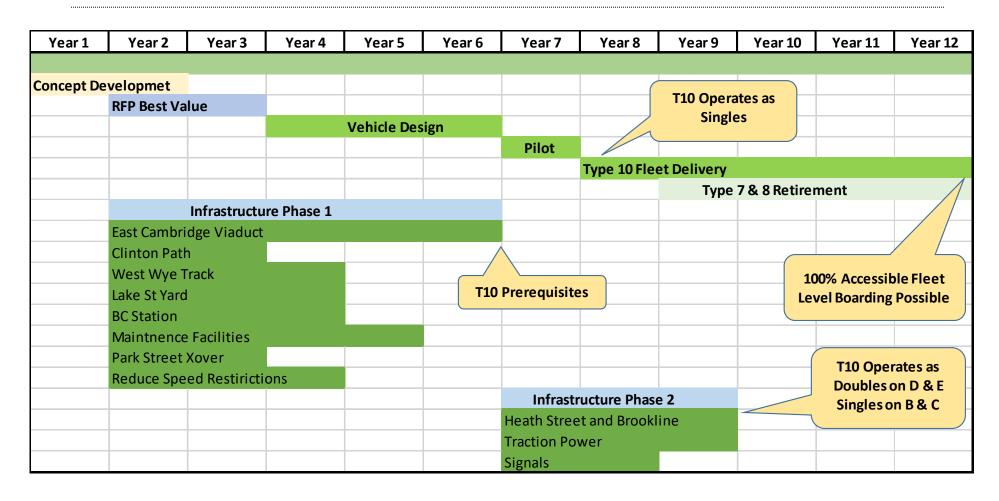
Proposed: 94 Trains


Capacity Gain: 100%+

- Necessary Projects
 - Complete Phase I Programs
 - Complete Phase II Programs
 - Complete Phase III Program
 - Extend or reconfigure 27 stations on the B & C Lines
 - Procure additional Type 10 vehicles
 - Expand vehicle storage to accommodate a larger fleet
- Rough estimated cost: TBD

Program Next Steps


- Award PM/CM Team For Green Line Transition Today
- Finalize Concept Vehicle Design Specifications & Award Vehicle Engineering & PM Contract
- Prepare detailed cost estimates for Phase II & III
- Complete Alternative program funding analysis


Thank you

Conceptual Implementation Plan

Phased Implementation Potential

Y1 Capacity Improvement & Fleet Procurement

Y12

Phase II

Vehicle Procurement
Lechmere Viaduct
Park Street Crossover
Maintenance Facilities
Lake St. and Reservoir Yards
BC Station Reconfiguration

Peak Service: 94 Trains

Peak Cars: 94 Cars

Capacity Gain: 10%

Phase III

Heath Street Station
Brookline Hills- East Bound
Boylston Station East Bound
Power & Signals
Type 7 & 8 Retirement

Peak Service: 94 Trains

Peak Cars: 147 Cars

2 Car Trains on D&E 1 Car Trains on B&C

100% Accessible Fleet

Capacity Gain: 50%

Possible Improvements

Phase IV

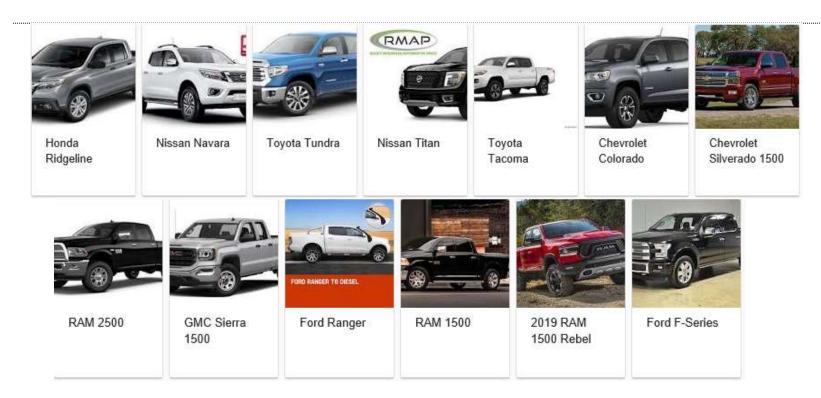
Vehicle Storage Expansion Additional Vehicle Purchase B & C Station Upgrades (30+) Power & Signals B & C

Peak Service: 94 Trains

Peak Cars: 188 Cars 2 car trains on all lines

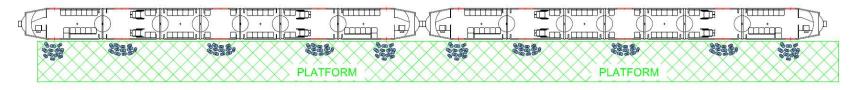
Capacity Gain: 100% +

Boylston EB – A Line


Existing Platform Length: 210 ft. (All Low) Extended Platform Length: 225 ft. (All Low)

Page 59 5/7/2018

Are these the same truck?

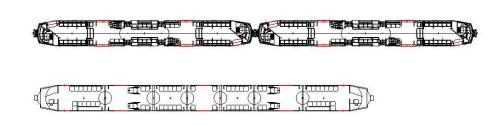

Yes - they are all pickup trucks. No - they are all designed and manufactured based on the unique goals, traditions and experiences of each manufacturer.

They have different supply chains, components, performance and nearly limitless variations, especially when aftermarket modifications are considered.

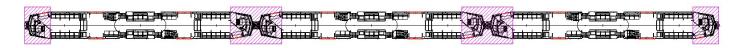


Dwell Time and Car Length

Type X Concept D



Type 9 (Concept G)



Concept D vs Concept G

Operations			Maintenance			
Passengers (8/m²)	Operators	Current Draw	Cabs	Trucks	Couplers	Articulations
396	2	2700	4	6	4	4
388	1	1850	2	4	2	6

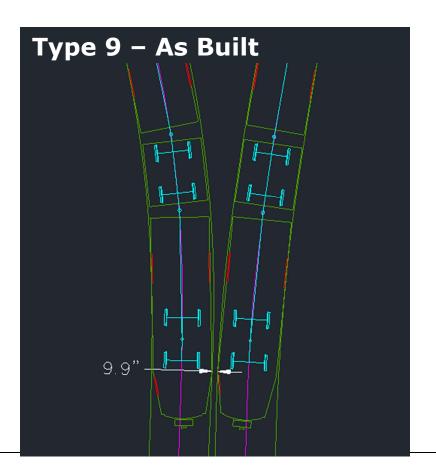
	Passengers Carried (8/m²)	Train Operators	Unused Space	Cabs	Trucks	Couplers	Articulations
Three Car Train	594	3	22%	6	9	6	6
Two Car Train	776	2	14%	4	8	4	12

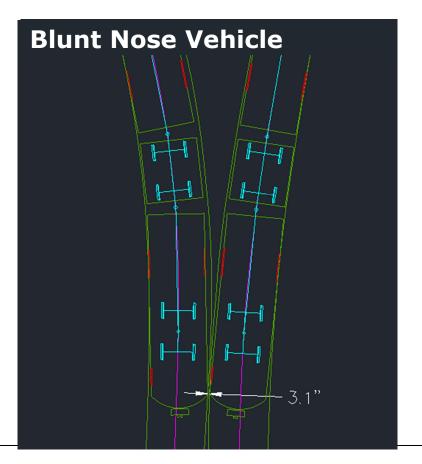
Tapered Noses are common for LRVs around the world

Example Solution 1

- Increasing front overhang requires additional clearance on outside of curves.
- Green Line clearance constraints prevent sufficient increase in front overhang for existing three-segment vehicle configurations.
- Moving to a seven-segment vehicle configuration (Concept D) allows increased front overhang without requiring additional clearance.

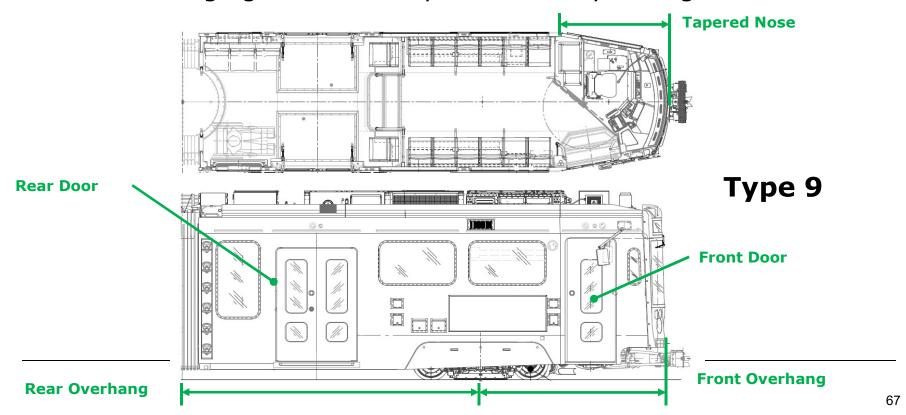
Example Solution 2


- Increasing rear overhang requires additional clearance on inside of curves.
- Green Line clearance constraints prevent sufficient increase in the rear overhang.
- Requires high floors at vehicle ends.



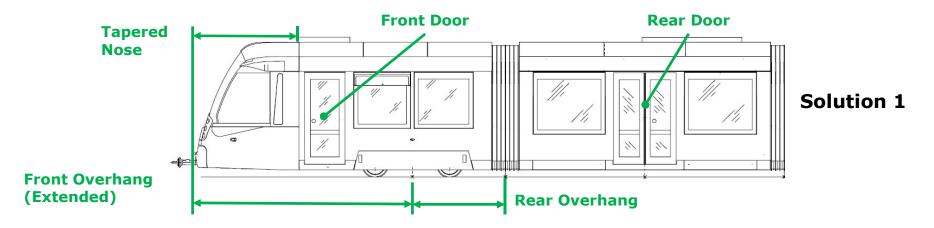
Tapered Nose Explanation

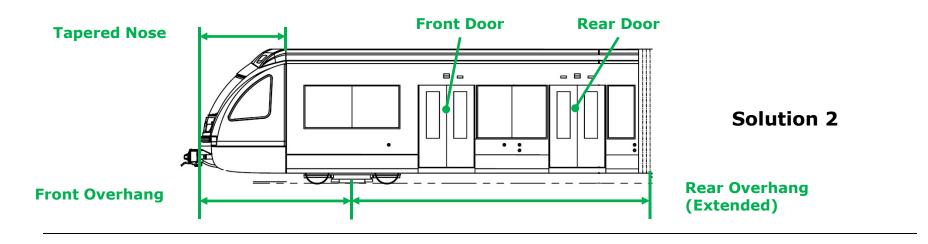
 Existing Green Line Vehicles are designed with tapered noses to reduce overhang when traversing tight curves.



Tapered Nose Explanation

It is less common to have a door built into the tapered nose:


- Partial-width cab.
- 2. Door on one side only.
- 3. Increases door-to-platform gap on tangent track.
- 4. Challenging to obtain required carbody strength.



Tapered Nose Explanation

• Two solutions are common throughout industry:

Example Solution 1

- Increasing front overhang requires additional clearance on outside of curves.
- Green Line clearance constraints prevent sufficient increase in front overhang for existing three-segment vehicle configurations.
- Moving to a seven-segment vehicle configuration (Concept D) allows increased front overhang without requiring additional clearance.

Example Solution 2

- Increasing rear overhang requires additional clearance on inside of curves.
- Green Line clearance constraints prevent sufficient increase in the rear overhang.
- Requires high floors at vehicle ends.

Kinkisharyo/Mitsubishi

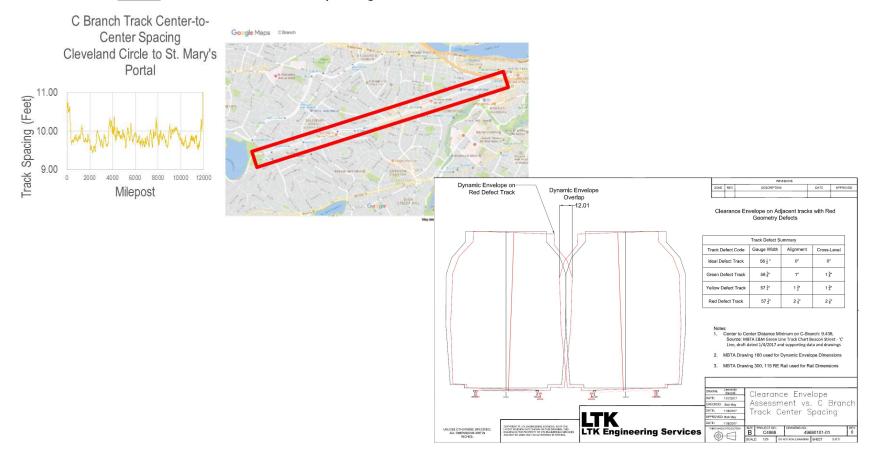
Kinkisharyo

CAF Urbos

Alstom Citadis

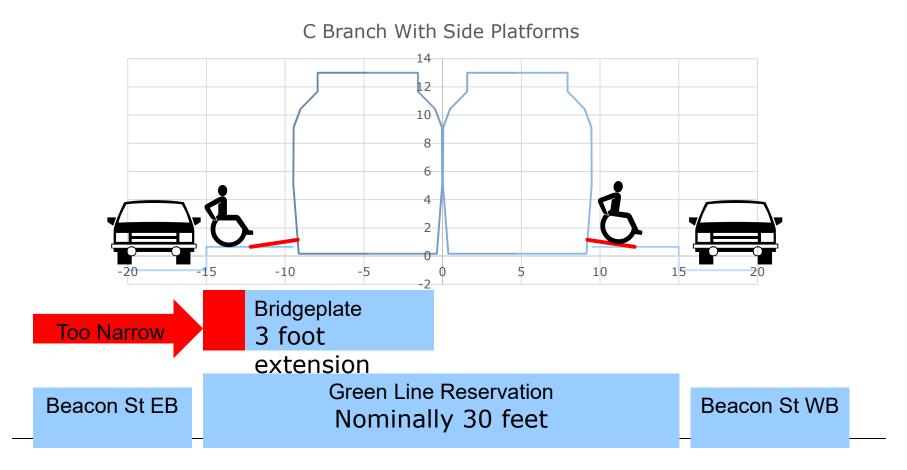
Bombardier Flexity

Siemens Avenio



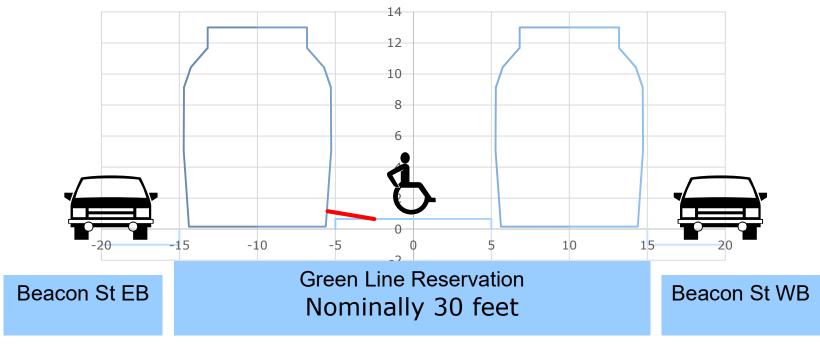
C- Line

C Branch Spacing


Almost the <u>entire</u> C Branch has track spacing less then 10 feet.

C Branch Accessibility Challenge

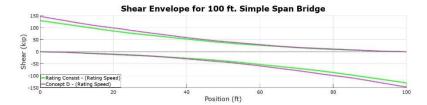
Many Stations are not wide enough for accessibility

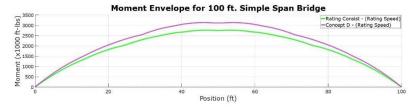


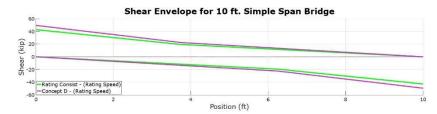
Accessibility Study Suggests Center Platforms

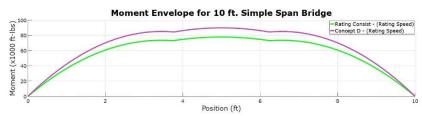
Provide a Path to Full Accessibility and Resolve Track Center Spacing

C Branch With Center Island Platforms




10 foot island platform



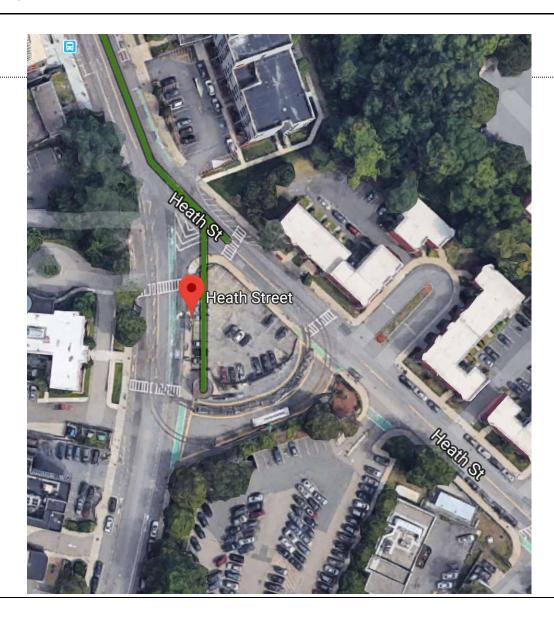

Load Rating of Bridges

- Longer and heavier cars with different axle spacing will load bridges differently than existing cars (Moment and Shear both increase
- All bridges will require "re-rating" analysis for a new car design because MBTA ratings and design standards are based on existing vehicles. The East Cambridge viaduct and Clinton Path underpass need strengthening.

Operational Constraints for Simulations

- All operational constraints that impact vehicle design and operations have been identified
 - Fare Collection Front door collection drives dwell time on surface stations, AFC 2.0 will eliminate this.
 - Park Street Lacks a crossover
 - GLX adds more passengers and trains
 - Track Condition Limits speeds and adds complexity to operations
 - Lake Street and reservoir Yard curves
 - Chicken farm (D Line Waban and Newton)
 - North Station X-over (toilet)
 - Double Berthing Dynamic Double Berthing needed
 - Station Consolidation Helpful
 - Traffic Signal Priority Helpful

Expanding Storage at Riverside?



DRAFT PLAN

Heath St

