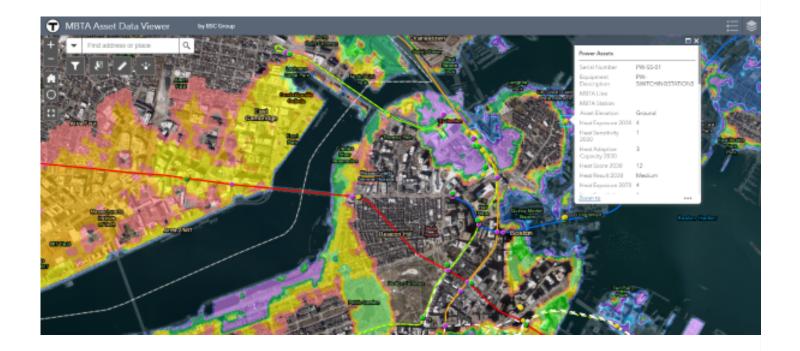


MBTA Climate Vulnerability Screening Report

Power, Signal, and Communication Systems on the Red, Blue, Orange, Green and Silver Lines

STV Incorporated & BSC Group, Inc. June 29, 2021



STV Team

- Marian Barth, PE Project Manager
- Sean Carney Traction Power System Specialist
- Marcela Calderon Communications System Specialist
- Joseph Traum, PE Signals Engineer

BSC Team

- **Jeff Malloy** Senior Climate Adaptation Planner
- Katie Kemen Climate Adaptation and Resilience Specialist
- **George Andrews** Senior GIS Analyst

Phase I Climate Change Vulnerability Assessment (CCVA) Summary

- Asset Data Collection
- Climate Change Data Collection
- Asset Scoring Development
- Preliminary Vulnerability Scoring
- Interactive Web Application with Results
- Performed to give MBTA a snapshot of vulnerabilities on overall systems
- · Identify additional needs for more robust assessment
- Power: Suppliers and equipment types
- Signal: Equipment types

 Communications: Equipment includes Security, Radio, IT, Telecom, AFC

Table 1-Comparison of Climate Variables, Scenarios, and Planning Horizons

Report	Planning Horizons	Emissions Scenarios	Extreme Heat	Sea Level Rise/ Storm Surge	Precipitation	Wind
MassDOT FHWA Pilot Project Report ² (2015)	2013 2030 2070 2100	8.5	N/A	Boston Harbor Flood Risk Model	Kleinfelder for Cambridge CCVA	Bosma et al. ³
Cambridge Climate Change Vulnerability Assessment ⁴ (2015/2017)	2000 2030 2070	4.5 8.5	Kleinfelder for Cambridge CCVA	Boston Harbor Flood Risk Model	Kleinfelder for Cambridge CCVA	N/A
Climate Ready Boston (2016) ⁵	2000 2030 2050 2070 2100	2.6 4.5 8.5	Cambridge CCVA; Trust for Public Land Urban Heat Islands	Boston Harbor Flood Risk Model	Boston Water and Sewer Commission; Boston Research Advisory Group ⁶	Boston Research Advisory Group
Braintree Climate Vulnerability Assessment and Action Plan (2017) ⁷	2000 2030 2050 2070 2090	2.6 ⁺ 4.5 8.5	Northeaster Climate Science Center, UMASS- Amherst (ResilientMA.org)	MA Office of Coastal Zone Management	Northeast Regional Climate Center; NOAA; MA Climate Change Adaptation Report; Climate Ready Boston	N/A
Medford Climate Change Vulnerability Assessment (2019)8	2000 2030 2050* 2070	2.6 4.5 8.5	Cambridge CCVA; Northeast Climate Science Center, UMASS- Amherst; Trust for Public Land Urban Heat Islands	Boston Harbor Flood Risk Model	Kleinfelder for Cambridge CCVA	N/A

⁺ Sea Level Rise only

Summary of Climate Data

Data Collection and Sources Informed by Metro-Boston regional adaptation efforts

- Boston Harbor Flood Risk Model (BH-FRM)
- Kleinfelder for Cambridge CCVA
- Trust for Public Land Urban Heat Islands
- Boston Water and Sewer Commission
- Boston Research Advisory Group
- ResilientMA MVP Downscaled Data (UMass-Amherst)
- Massachusetts Coastal Zone Management
- Climate Ready Boston

[^] Annual exceedance probability

^{*} In regard to Amelia Earhart Dam-related impacts only

Climate Data: Assumptions and Goals

- Align with other MBTA CCVA efforts
- Climate projections selected that could be applied across broad geographic region (i.e. MBTA service footprint)
- 2030 and 2070 Planning Horizons
- Extreme Temperatures urban heat island not evaluated
- Flooding (Inland/Coastal) Applies BH-FRM combined with FEMA-FIRM
- 1/3 of assets outside the extent of BH-FRM
- Reliable models for wind remain undeveloped
- MBTA has a robust snow and ice operations plan
- Assets evaluated on an "In" or "Out" condition

Climate Exposure Thresholds

Stressor	2030 Climate Stressor Threshold	2070 Climate Stressor Threshold
Extreme heat ¹⁸	96°F average daily summer heat index	115°F average daily summer heat index
	(90°F ambient temperature with relative	(100°F ambient temperature with relative
	humidity of 50-55%)	humidity of 50-55%)
Sea level rise & storm	1%+ Annual Exceedance Probability,	1%+ Annual Exceedance Probability,
surge	Boston Harbor Flood Risk Model	Boston Harbor Flood Risk Model
	Or	Or
	500-year floodplain, FEMA Coastal Flood	500-year floodplain, FEMA Coastal Flood
	Insurance Rate Maps	Insurance Rate Maps
Inland flooding	500-year floodplain, FEMA Flood	Not assessed
	Insurance Risk Maps	
Wind	126 mph 3-second gust, ASCE 7 + 5%	130 mph 3-second gust, ASCE 7 + 8%
	climate change factor	climate change factor
Winter Weather	Temperature < 20°F and 24" of snow,	Not assessed
	Thresholds for Extreme Cold Operations	
	& Level 4 storm per MBTA Snow & Ice	
	Operations Plan	

Power Equipment Types	Signal Equipment Types	Communication Equipment Types
Emergency Generator, Light Tower	Hand Throw Switch w/Heater	Automated Fare Collection Room
Emergency Generator, Portable	Hand Throw Switch w/o Heater	Bidirectional Amplifiers
Emergency Generator, Stationary Gas	Heat Case	Communications Room
Gas Turbine Feeder Station	Power Switch w/Heater	Radio Antenna
Generation	Power Switch w/o Heater	Switch Location
High Voltage Yard	Signal	
Overhead Catenary System	Signal Bungalow	
Switching Station	Signal Case	
Traction Power Substation	Signal Detector	
Unit Substation	Signal Loops	
	Signal Shelter	
	Signal Trip	
	Track Circuit	

Asset Data

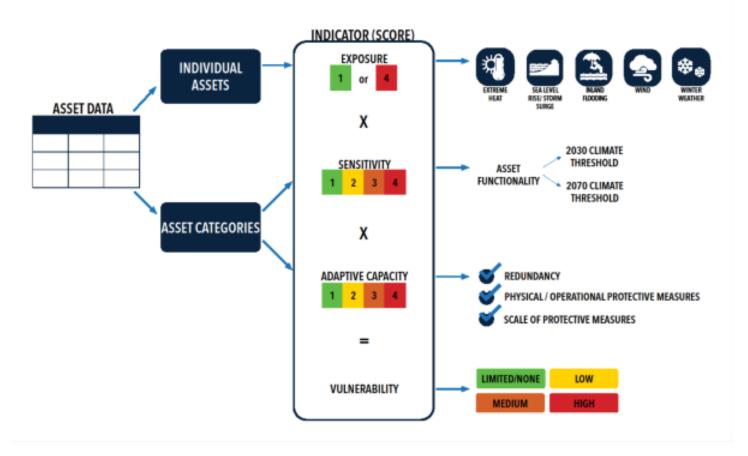
- Started with TRAPEZE asset database for all Power Signal and Communications (dated 9/25/20)
- **Power:** contained most discrete asset data => preliminary assessment of individual assets

- **Signals:** equipment type, assigned to stations/areas => asset class and region vulnerability
- **Communications:** no asset data available => equipment type vulnerability
- Meetings with internal MBTA departments
- Shared documents: reports, lists, charts, and drawings

SERIAL_NO	EQP_TYPE	EQP_DESC	MBTA_LINE	MBTA_STATION	ASSET_ELEV	Y_LAT	X_LONG
SG-BUNGALOW-AQUARIUM	BUNGALOW	AQUARIUM BUNGALOW	BLUE	AQUARIUM	Below	42.359619	-71.051603
SG-BUNGALOW-AIRPORT	BUNGALOW	AIRPORT BUNGALOW	BLUE	AIRPORT	Ground	42.374815	-71.029683
SG-BUNGALOW-BEACHMONT	BUNGALOW	BEACHMONT BUNGALOW	BLUE	BEACHMONT	Ground	42.397561	-70.992457
SG-BUNGALOW-GVTCENTER	BUNGALOW	GVT CENTER BUNGALOW	BLUE	GOVERNMENT CENTER	Below	42.359599	-71.059574
SG-BUNGALOW-MAVERICK	BUNGALOW	MAVERICK BUNGALOW	BLUE	MAVERICK	Below	42.369484	-71.039233
SG-BUNGALOW-ORIENT HHTS	BUNGALOW	ORIENT HEIGHTS BUNGALO	BLUE	ORIENT HEIGHTS	Ground	42.414459	-70.991042
SG-BUNGALOW-WONDERLAND	BUNGALOW	WONDERLAND BUNGALOW	BLUE	WONDERLAND	Ground	42.414459	-70.991042
SG-BL-CASE-917	SG-CASE	CASE, BLUE LINE AQUARIUI	BLUE	AQUARIUM	Below	42.359619	-71.051603
SG-BL-CASE-918	SG-CASE	CASE, BLUE LINE AQUARIUI	BLUE	AQUARIUM	Below	42.359619	-71.051603
SG-BL-CASE-919	SG-CASE	CASE, BLUE LINE AQUARIUI	BLUE	AQUARIUM	Below	42.359619	-71.051603
SG-BL-CASE-922	SG-CASE	CASE, BLUE LINE AQUARIUI	BLUE	AQUARIUM	Below	42.359619	-71.051603
SG-BL-CASE-923	SG-CASE	CASE, BLUE LINE AQUARIUI	BLUE	AQUARIUM	Below	42.359619	-71.051603
SG-BL-CASE-924	SG-CASE	CASE, BLUE LINE AQUARIUI	BLUE	AQUARIUM	Below	42.359619	-71.051603
SG-BL-CASE-9006	SG-CASE	CASE, BLUE LINE AIRPORT	BLUE	MAVERICK	Below	42.369484	-71.039233
SG-BL-CASE-9007	SG-CASE	CASE, BLUE LINE AIRPORT	BLUE	MAVERICK	Below	42.374815	-71.029683
SG-BL-CASE-9009	SG-CASE	CASE, BLUE LINE AIRPORT	BLUE	MAVERICK	Below	42.374815	-71.029683
SG-BL-CASE-9010	SG-CASE	CASE, BLUE LINE AIRPORT 1	BLUE	MAVERICK	Below	42.374815	-71.029683
SG-BL-CASE-9011	SG-CASE	CASE, BLUE LINE AIRPORT	BLUE	MAVERICK	Below	42.374815	-71.029683
SG-BL-CASE-9012	SG-CASE	CASE, BLUE LINE AIRPORT	BLUE	MAVERICK	Below	42.374815	-71.029683
SG-BL-CASE-9013	SG-CASE	CASE, BLUE LINE AIRPORT	BLUE	MAVERICK	Below	42.374815	-71.029683
SG-BL-CASE-9014	SG-CASE	CASE, BLUE LINE AIRPORT	BLUE	MAVERICK	Below	42.374815	-71.029683
SG-BL-CASE-7-4W	SG-CASE	CASE, BLUE LINE ORIENT H	BLUE	ORIENT HEIGHTS	Ground	42.374815	-71.029683
SG-BL-CASE-7-6E	SG-CASE	CASE, BLUE LINE ORIENT H	BLUE	ORIENT HEIGHTS	Ground	42.374815	-71.029683
SG-BL-CASE-7-A6E	SG-CASE	CASE, BLUE LINE ORIENT H	BLUE	ORIENT HEIGHTS	Ground	42.374815	-71.029683
SG-BL-CASE-7-B6E	SG-CASE	CASE, BLUE LINE ORIENT H	BLUE	ORIENT HEIGHTS	Ground	42.374815	-71.029683
SG-BL-CASE-9005	SG-CASE	CASE, BLUE LINE WOOD ISL	BLUE	ORIENT HEIGHTS	Ground	42.374815	-71.029683
SG-BL-CASE-9029	SG-CASE	CASE, BLUE LINE ORIENT H	BLUE	ORIENT HEIGHTS	Ground	42.374815	-71.029683
SG-BL-CASE-9030	SG-CASE	CASE, BLUE LINE ORIENT H	BLUE	ORIENT HEIGHTS	Ground	42.374815	-71.029683
SG-BL-CASE-9032	SG-CASE	CASE, BLUE LINE ORIENT H	BLUE	ORIENT HEIGHTS	Ground	42.374815	-71.029683
SG-BL-CASE-9033	SG-CASE	CASE, BLUE LINE ORIENT H	BLUE	ORIENT HEIGHTS	Ground	42.374815	-71.029683
SG-BL-CASE-9034	SG-CASE	CASE, BLUE LINE ORIENT H	BLUE	ORIENT HEIGHTS	Ground	42.374815	-71.029683
SG-BL-CASE-9036	SG-CASE	CASE, BLUE LINE ORIENT H	BLUE	ORIENT HEIGHTS	Ground	42.374815	-71.029683
SG-BL-CASE-9038	SG-CASE	CASE, BLUE LINE ORIENT H	BLUE	ORIENT HEIGHTS	Ground	42.374815	-71.029683
SG-BL-CASE-9040	SG-CASE	CASE, BLUE LINE ORIENT H	BLUE	ORIENT HEIGHTS	Ground	42.374815	-71.029683

Asset Data Limitations

Limited by the existing MBTA data provided

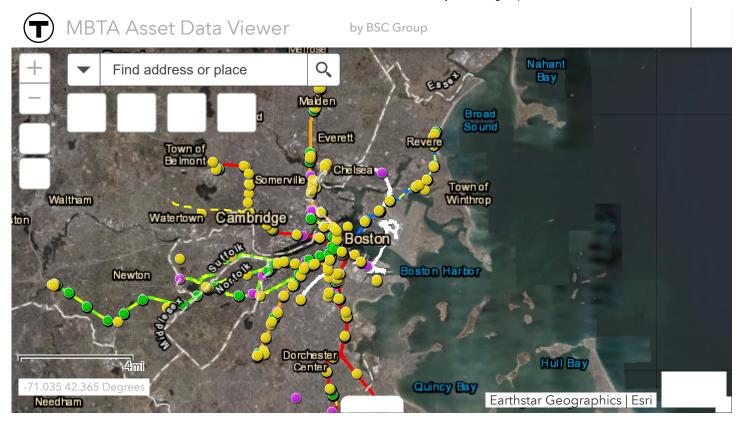

No field observations performed yet to validate

Geospatial assumptions necessary

- Many assets associated to closest station
- Elevations unknown

• Assumption either below ground or at ground

CLIMATE CHANGE VULNERABILITY SCREENING ASSESSMENT



Vulnerability Screening Assessment Methodology

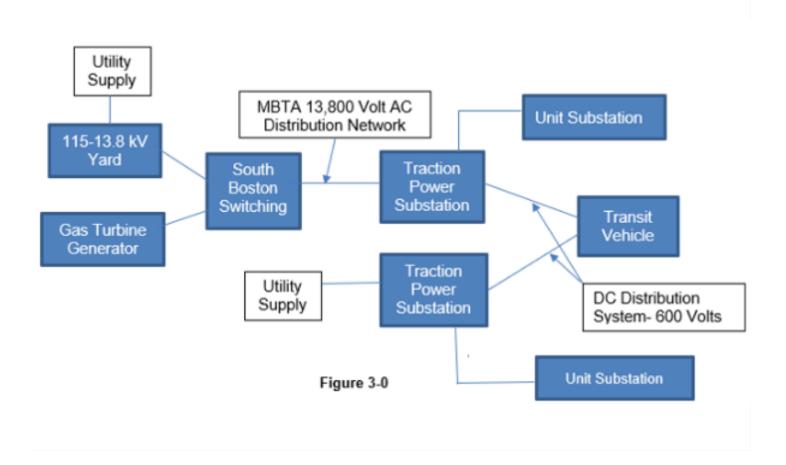

Exposure (1 or 4)	Sensitivity or Adaptive Capacity (1-4)		Numerical Vulnerability Score	Vulnerability Category	
1	1	1	1	Limited/None	
1	1	2	2	Limited/None	
1	1	3	3	Limited/None	
1	1	4	4	Low	
1	2	2	4		
4	1	1	4		
1	2	3	6	Low	
1	2	4	8	Low	
4	1	2	8		
1	3	3	9	Low	
1	3	4	12	Medium	
4	1	3	12		
1	4	4	16	Medium	
4	1	4	16		
4	2	2	16		
4	2	3	24	Medium	
4	2	4	32	High	
4	3	3	36	High	
4	3	4	48	High	
4	4	4	64	High	

Table 10-Example Power Asset Score

Asset information							
Serial Number: G940549164				Line/Station: Blue/Beachmont			
Description: Emergency Generator, Beachmont Station				Latitude/Longitude: 42.39721/-70.9925			
Asset Category: Emergency Generator, Stationary				Grade location: At/Above Ground Level			
Asset Vulnerability							
Climate Variable (Time Horizon)	Exposure	Sensitivity		Adaptive	Numerical	Vulnerability	
				Capacity	Vulnerability	Level	
Extreme Heat (2030)	4	1		4	16	Medium	
Extreme Heat (2070)	4	4 2		4	32	High	
Sea Level Rise/Storm Surge (2030)	1 4			3	12	Medium	
Sea Level Rise/Storm Surge (2070)	4	4 4		3	48	High	
Inland Flooding	1	4		3	12	Medium	
Wind	4 1			4	16	Medium	
Winter Weather	4	2		2	16	Medium	

ArcGIS Web Application

Power Systems

There are over 1200 power assets across the system not including that each system has either a hierarchy or web of asset classes that make up the operation of the system.

Key Evaluation Components

- 1. Generation
- 2. Utility Supplier (Eversource, National Grid, and Braintree Electric Light Dept.)
- 3. Transmission
- 4. Substations/Unit Substations
- 5. Distribution

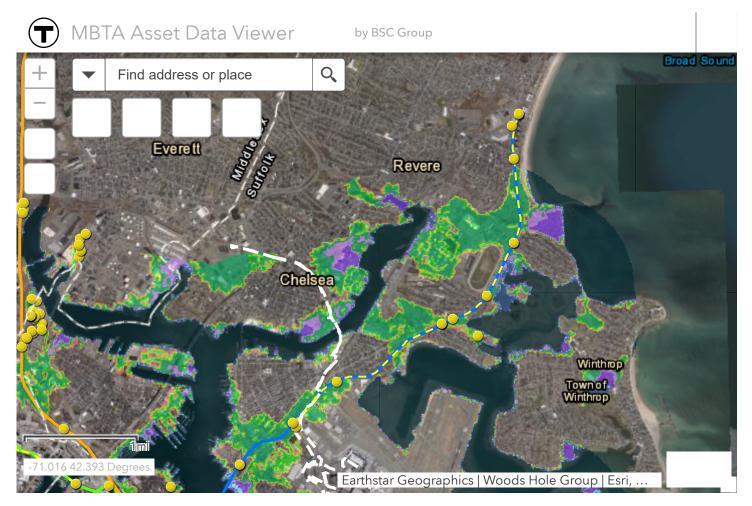
Power Generation

MBTA Power Systems can only be as reliable as the power source

- Gas Turbines
- Transmission
- Switching Stations: South Boston, Lincoln, and North Station

Utility Suppliers

- Eversource
- National Grid
- Braintree Electric Light Dept.


Traction Power Substations & Unit Substations

PW-SWITCHINGSTATIONS, PW-TPS, PW-USS

All switching stations exposed to sea level rise by 2070. Lincoln Switching Station exposed by 2030.

21 Traction Power and Unit Substations have 2030 HIGH vulnerability to flooding; increases by **2.5x** in 2070

PW-TPS, PW-USS

21 Traction Power Substations and Unit Substations have 2030 HIGH vulnerability to flooding; increases by **2.5x** in 2070

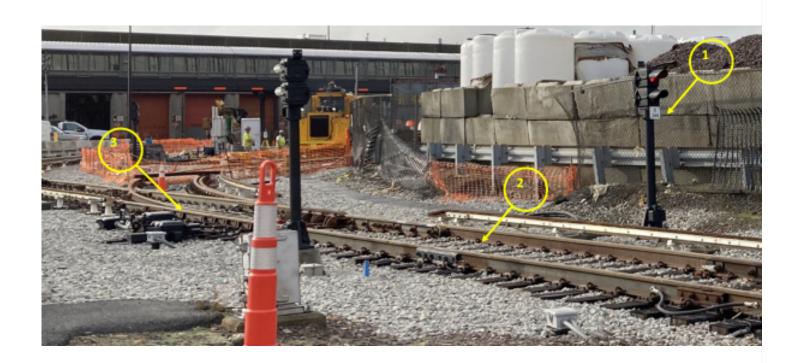
Overhead Catenary System

PW-OCS

OCS MEDIUM vulnerability 2030, HIGH by 2070

Emergency Power

PW-EMGEN-STATIONARY, PW-EMGEN-PORTABLE, PW-XEMGEN-LIGHTTOWER


- Stationary Generators
- Portable Generator
- Generator Light Tower

Wind serves as the highest source of vulnerability for light towers.

All stationary and portable generators increase from MEDIUM to HIGH vulnerability from 2030 to 2070 to extreme heat.

Flood exposure for several generators along the Blue, Red, and Orange Lines.

Signal Systems

Purpose: To Safely and Efficiently control train movements

Vital System - Most important critical system of MBTA

- Safety above all else!
- Failure of any component "Fail Safe" mode operation

Signal System Assets are related to three Main Wayside Components:

1. Signal Display

- 2. Train Detection and Control (Speed/Stop Commands)
- 3. Switch Control and Indication

Signal Systems - Assets

Signal Bungalow (SG-BUNGALOW) / Signal Shelter (SG-SHELTER)

Assets exposed to coastal storm flooding scored HIGH vulnerability in 2030 and 2070. Assets located outside coastal flood areas in 2030 and 2070 received a score of MEDIUM.

These assets have an inherent HIGH vulnerability to extreme temperatures, however will operate as normal with functioning HVAC systems.

Signal Systems - Assets

Signal Case (SG-CASE)

These assets are highly subject to FAIL in extreme heat conditions in 2070. The assets are not climate controlled.

Assets exposed to flooding score HIGH vulnerability in 2030 and 2070. Low adaptive capacity due to accessibility during flood events.

Signal Systems - Assets

Hand Throw Switch with Heater (SG-HTELECTRICLOCKSWI)

Power Switch with Heater (SG-HEATELEMENT)

Hand Throw Switch without Heater (SG-HTNOELECTRICLOCKSWI)

Power Switch without Heater (SG-HTNOSIGNALEQUIPMENTSWI)

Switch Heater Case (SG-HEATCASE)

Power Switch and Hand Throw Switch asset categories are highly vulnerable to flood conditions.

Signal Systems - Assets

Signal Loops (SG-LOOPS)

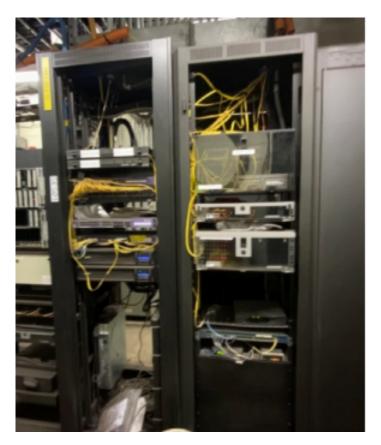
Signal Detector (SG-DETECTOR) Signal Trip (SG-TRIP) **Track Circuit (SG-TRK)**

Most Vulnerable to Flooding, High Water, Snow/Ice Build-up, Wind

These items have a high tolerance for all climate conditions, however it is the period length of exposure that should be considered.

SIGNAL ITEMS NOT COVERED DIRECTLY BY THIS STUDY

Signals


- Signals Wall Mounted No flooding issues, Excessive winds
- Signals Pole Mounted High Water (base only), Excessive winds
- Signals Ground Mounted (Dwarf Signals) Flooding, High Water

Signal Cables

- Cables mounted to walls or directly underground (no flooding with armor/excessive winds)
- Cable mounted in Conduits and Cable Troughs (no flooding/excessive winds)

Cable Routing Devices

- Cable Termination Cases and Junction Boxes
- Same vulnerabilities as signal cases

Communications

Protect MBTA Security and Communications Equipment Safely and Efficiently

- AFC Rooms
- Communications Rooms
- Bidirectional Amplifiers/Radio Rooms
- Radio Antennas
- Switch Locations

Communications

CM-X-COMMUNICATIONSROOM, CM-X-AFCROOM, CM-X-SWITCH-LOCATIONS

Critical Assets on Security and Communications Systems – critical system of MBTA

- Wide Area Network equipment
- AFC equipment
- Security equipment

Communications


CM-X-ANTENNAS-RADIO, CM-X-RADIO-BDA

Radio Equipment

- Radio Antennas
- Bidirectional Amplifiers

Communications - Vulnerabilities

Flooding/high water cause devices to deteriorate and risk operation failure

Switch Locations and AFC Rooms score HIGH vulnerability to extreme heat by 2030.

17% of system-wide assets score HIGH vulnerability to inland flooding by 2030.

7% of system-wide assets score HIGH vulnerability to coastal flooding by 2030, increasing to 35% by 2070.

MBTA Assets - Summary

Power system is critical to all other systems

- **Lincoln Switching Station** HIGH vulnerability to inland flooding near term
- All other switching stations by 2070
- Traction Power Substations

MBTA Assets - Summary Signal System VITAL to operations

- Signal Cases HIGH for heat and flooding
- Flooding in Red and Blue Line areas

MBTA Assets - Summary

Communications

- Heat is stressor for all Switch Locations and AFC Rooms
- Locations along Blue Line, Alewife/JFK on Red Line and Sullivan
 Square on the Orange Line exhibit flooding risk, further elevation data necessary

Recommendations - Future Analysis

Phase 1 Analysis provides an incomplete picture of true asset vulnerability

- Geospatial Asset Characteristics More Detail Needed
- Asset Condition Characteristics More Detail Needed/Existing Adaptive Capacity (e.g. assets on raised platforms above flood elevation, state of good repair)
- Climate Data Projections Recent and Nuanced Climate Projections
- Context/Site Specific Analysis Field Truth Assets
- Criticality Analysis based on asset factors such as life safety, operations, system interdependencies, economic impacts and cost to repair
- Estimates of repair costs/cost-benefit analysis

Questions?